Low-level Software Security by Example

2 2

Ulfar Erlingssonl, Yves Younan“, and Frank Piessens
I\ icrosoft Research, Silicon Valley
lReykj avik University, Iceland
2Katholieke Universiteit Leuven, Belgium

Abstract. Computers are often subject to external attacks that aim to
control software behavior. Typically, such attacks arrive as data over a
regular communication channel and, once resident in program memory,
trigger pre-existing, low-level software vulnerabilities. By exploiting such
flaws, these low-level attacks can subvert the execution of the software
and gain control over its behavior. The combined effects of these attacks
make them one of the most pressing challenges in computer security.
As a result, in recent years, many mechanisms have been proposed for
defending against these attacks.

This chapter aims to provide insight in low-level software attack and
defense techniques by discussing 4 examples of attacks that are repre-
sentative of the major types of attacks on C and C++ software, and 4
examples of defenses selected because of their effectiveness, wide applica-
bility and low enforcement overhead. Attacks and defenses are described
in enough detail to be understood even by readers without a background
in software security, and with-out a natural inclination for crafting ma-
licious attacks.

Throughout, the attacks and defenses are placed in perspective by show-
ing how they are both facilitated by the gap between the semantics of
the high-level language of the software under attack, and the low-level
semantics of machine code and the hardware on which the software exe-
cutes.

1 Background

Software vulnerabilities are software bugs that can be triggered by an attacker
with possibly disastrous consequences. This introductory section provides more
background about such vulnerabilities, why they are so hard to eliminate, and
how they can be introduced in a software system. Both attacking such vulner-
abilities, and defending against such attacks depends on low-level details of the
software and machine under attack, and this section ends with a note on the
presentation of such low-level details in this chapter.

1.1 The difficulty of eliminating low-level vulnerabilities

Figure 1 is representative of the attacks and defenses presented in this tutorial.
The attacks in Sect. 2 all exploit vulnerabilities similar to that in Fig. 1(a),

int unsafe(char* a, charx b) int safer(char* a, charx b)

{ {
char t[MAX_LEN]; char t[MAX_LEN] = { °\0’ };
strepy(t, a); strcpy_s(t, _countof(t), a);
strcat(t, b); strcat_s(t, _countof(t), b);
return strcmp(t, "abc"); return strcmp(t, "abc");
} }
(a) An unchecked C function. (b) A safer version of the function.

Fig. 1. Two C functions that both compare whether the concatenation of two input
strings is the string “abc”. The first, unchecked function (a) contains a security vul-
nerability if the inputs are untrusted. The second function (b) is not vulnerable in this
manner, since it uses new C library functions that perform validity checks against the
lengths of buffers Modern compilers will warn about the use of older, less safe library
functions, and strongly suggest the use of their newer variants

where a buffer overflow may be possible. For the most part, the defenses in
Sect. 3 use techniques like those in Fig. 1(b) and prevent exploits by maintaining
additional information, validating that information with runtime checks, and
halting execution if such a check fails.

Unfortunately, unlike in Fig. 1, it is often not so straightforward to modify
existing source code to use new, safer methods of implementing its functionality.
For most code there may not be a direct correspondence between well-known,
unsafe library functions and their newer, safer versions. Indeed, existing code
can easily be unsafe despite not using any library routines, and vulnerabilities
are often obscured by pointer arithmetic or complicated data-structure traversal.
(To clarify this point, it is worth comparing the code in Fig. 1 with the code in
Fig. 3, on page 5, where explicit loops implement the same functionality.)

Furthermore, manual attempts to remove software vulnerabilities may give
a false sense of security, since they do not always succeed and can sometimes
introduce new bugs. For example, a programmer that intends to eliminate buffer
overflows in the code of Fig. 1(a) might change the strcpy and strcat function
calls as in Fig. 1(b), but fail to initialize t to be the empty string at the start of
the function. In this case, the strcmp comparison will be against the unmodified
array t, if both strings a and b are longer than MAX_LEN.

Thus, a slight omission from Fig. 1(b) would leave open the possibility of an
exploitable vulnerability as a result of the function reporting that the concatena-
tion of the inputs strings is "abc", even in cases when this is false. In particular,
this may occur when, on entry to the function, the array t contains "abc" as a
residual data value from a previous invocation of the function.

Low-level software security vulnerabilities continue to persist due to technical
reasons, as well as practical engineering concerns such as the difficulties involved
in modifying legacy software. The state of the art in eliminating these vulner-
abilities makes use of code review, security testing, and other manual software
engineering processes, as well as automatic analyses that can discover vulnerabil-
ities [21]. Furthermore, best practice also acknowledges that some vulnerabilities

are likely to remain, and make those vulnerabilities more difficult to exploit by
applying defenses like those in this tutorial.

1.2 The assumptions underlying software, attacks, and defenses

Programmers make many assumptions when creating software, both implicitly
and explicitly. Some of these assumptions are valid, based on the semantics of the
high-level language. For instance, C programmers may assume that execution
does not start at an arbitrary place within a function, but at the start of that
function.

Programmers may also make questionable assumptions, such as about the
execution environment of their software. For instance, software may be written
without concurrency in mind, or in a manner that is dependent on the address
encoding in pointers, or on the order of heap allocations. Any such assumptions
hinder portability, and may result in incorrect execution when the execution
environment changes even slightly.

Finally, programmers may make invalid, mistaken assumptions. For example,
in C, programmers may assume that the int type behaves like a true, math-
ematical integer, or that a memory buffer is large enough for the size of the
content it may ever need to hold. All of the above types of assumptions are rel-
evant to low-level software security, and each may make the software vulnerable
to attack.

At the same time, attackers also make assumptions, and low-level software
attacks rely on a great number of specific properties about the hardware and
software architecture of their target. Many of these assumptions involve details
about names and the meaning of those names, such as the exact memory ad-
dresses of variables or functions and how they are used in the software. These
assumptions also relate to the software’s execution environment, such as the
hardware instruction set architecture and its machine-code semantics. For ex-
ample, the Internet Worm of 1988 was successful in large part because of an
attack that depended on the particulars of the commonly-deployed VAX hard-
ware architecture, the 4 BSD operating system, and the fingerd service. On
other systems that were popular at the time, that same attack failed in a man-
ner that only crashed the fingerd service, due to the differences in instruction
sets and memory layouts [39]. In this manner, attack code is often fragile to the
point where even the smallest change prevents the attacker from gaining control,
but crashes the target software—effecting a denial-of-service attack.

Defense mechanisms also have assumptions, including assumptions about the
capabilities of the attacker, about the likelihood of different types of attacks,
about the properties of the software being defended, and about its execution
environment. In the attacks and defenses that follow, a note will be made of
the assumptions that apply in each case. Also, many defenses (including most
of the ones in this tutorial) assume that denial-of-service is not the attacker’s
goal, and halt the execution of the target software upon the failure of runtime
validity checks.

1.3 The presentation of technical details in this chapter

The presentation in this chapter assumes a basic knowledge of programming
languages like C, and their compilation, as might be acquired in an introductory
course on compilers. For the most part, relevant technical concepts are intro-
duced when needed.

As well as giving a number of examples of vulnerable C software, this chap-
ter shows many details relating to software execution, such as machine code
and execution stack content. Throughout, the details shown will reflect software
execution on one particular hardware architecture—a 32-bit x86, such as the
TA-32 [11]—but demonstrate properties that also apply to most other hardware
platforms. The examples show many concrete, hexadecimal values and—in order
to avoid confusion—the reader should remember that on the little-endian x86,
when four bytes are displayed as a 32-bit integer value, their printed order will
be reversed from the order of the bytes in memory. Thus, if the hexadecimal
bytes Oxaa, 0xbb, Oxcc, and 0xdd occur in memory, in that order, then those
bytes encode the 32-bit integer Oxddccbbaa.

2 A selection of low-level attacks on C software

This section presents four low-level software attacks in full detail and explains
how each attack invalidates a property of target software written in the C lan-
guage. The attacks are carefully chosen to be representative of four major classes
of attacks: stack-based buffer overflows, heap-based buffer overflows, jump-to-
libc attacks, and data-only attacks.

No examples are given below of a “format-string attack” or of an “integer-
overflow vulnerability”. Format-string vulnerabilities are particularly simple to
eliminate [12]; therefore, although they have received a great deal of attention
in the past, they are no longer a significant, practical concern in well-engineered
software. Integer-overflow vulnerabilities [8] do still exist, and are increasingly
being exploited, but only as a first step towards attacks like those described
below. In this section, Attack 4 is one example where an integer overflow might
be the first step in the exploit crafted by the attacker.

As further reading, the survey of Pincus and Baker gives a good general
overview of low-level software attacks like those described in this section [34].

2.1 Attack 1: Corruption of a function return address on the stack

It is natural for C programmers to assume that, if a function is invoked at a
particular call site and runs to completion without throwing an exception, then
that function will return to the instruction immediately following that same,
particular call site.

Unfortunately, this may not be the case in the presence of software bugs. For
example, if the invoked function contains a local array, or buffer, and writes into
that buffer are not correctly guarded, then the return address on the stack may

int is_file_foobar(char* one, char* two)

{
// must have strlen(one) + strlen(two) < MAX_LEN
char tmp[MAX_LEN];
strcpy(tmp, one);
strcat(tmp, two);
return strcmp(tmp, "file://foobar");
}

Fig.2. A C function that compares the concatenation of two input strings against
“file:/ /foobar”. This function contains a typical stack-based buffer overflow vulnera-
bility: if the input strings can be chosen by an attacker, then the attacker can direct
machine-code execution when the function returns

int is_file_foobar_using_loops(char* one, char* two)

{
// must have strlen(one) + strlen(two) < MAX_LEN
char tmp[MAX_LEN];
char*x b = tmp;
for(; *ome != ’\0’; ++one, ++b) *b = *one;
for(; *two != ’\0’; ++two, ++b) *b = *two;
*xb = :\0;;
return strcmp(tmp, "file://foobar");
}

Fig. 3. A version of the C function in Fig. 2 that copies and concatenates strings using
pointer manipulation and explicit loops. This function is also vulnerable to the same
stack-based buffer overflow attacks, even though it does not invoke strcpy or strcat
or other C library functions that are known to be difficult to use safely

be overwritten and corrupted. In particular, this may happen if the software
copies to the buffer data whose length is larger than the buffer size, in a buffer
overflow.

Furthermore, if an attacker controls the data used by the function, then the
attacker may be able to trigger such corruption, and change the function return
address to an arbitrary value. In this case, when the function returns, the attacker
can direct execution to code of their choice and gain full control over subsequent
behavior of the software. Figures 2 and 3 show examples of C functions that are
vulnerable to this attack. This attack, sometimes referred to as return-address
clobbering, is probably the best known exploit of a low-level software security
vulnerability; it dates back to before 1988, when it was used in the fingerd
exploit of the Internet Worm. Indeed, until about a decade ago, this attack was
seen by many as the only significant low-level attack on software compiled from C
and C++, and “stack-based buffer overflow” were widely considered a synonym
for such attacks. More recently, this attack has not been as prominent, in part
because other methods of attack have been widely publicized, but also in part
because the underlying vulnerabilities that enable return-address clobbering are

address content

0x0012ff5c 0x00353037 ; argument two pointer

0x0012f£58 0x0035302f ; argument one pointer

0x0012ff54 0x00401263 ; return address

0x0012f£f50 0x0012ff7c ; saved base pointer

0x0012ff4c 0x00000072 ; tmp continues ’r’ ’\0’ ’\0’ ’\0’
0x0012f£f48 0x61626£f6f ; tmp continues ’o’ ’o’ ’b’ ’a’
0x0012ff44 0x662f2f3a ; tmp continues ’:’ ’/’ ?/> ’f’
0x0012ff40 0x656c6966 ; tmp array: £ 230 01 e’

Fig. 4. A snapshot of an execution stack for the functions in Figs. 2 and 3, where the
size of the tmp array is 16 bytes. This snapshot shows the stack just before executing the
return statement. Argument one is “file://”, and argument two is “foobar”, and the
concatenation of those strings fits in the tmp array. (Stacks are traditionally displayed
with the lowest address at the bottom, as is done here and throughout this chapter)

address content
0x0012ff5c 0x00353037 ; argument two pointer
0x0012f£58 0x0035302f ; argument one pointer

0x0012ff54 0x00666473 ; return address ’s? 2d? f? °\O?
0x0012ff50 0x61666473 ; saved base pointer ’s’ ’d’ ’f’ ’a’
0x0012ff4c 0x61666473 ; tmp continues ’s’ ’d’ ’f’ a’
0x0012ff48 0x61666473 ; tmp continues ’s? ’d’ ’f’ a’
0x0012ff44 0x612f2f3a ; tmp continues di2 0 00 g
0x0012ff40 0x656c6966 ; tmp array: 2£2 230 010 e’

Fig.5. An execution-stack snapshot like that in Fig. 4, but where argument one is
“file://” and argument two is “asdfasdfasdfasdf”. The concatenation of the argument
strings has overflowed the tmp array and the function return address is now determined
by the last few characters of the two string

slowly being eliminated (e.g., through the adoption of newer, safer C library
functions).

To give a concrete example of this attack, Fig. 4 shows a normal execution
stack for the functions in Figs. 2 and 3, and Fig. 5 shows an execution stack for
the same code just after an overflow of the local array—potentially caused by
an attacker that can choose the contents of the two string provided as input.

Of course, an attacker would choose their input such that the buffer overflow
would not caused by “asdfasdfasdfasdf”, but another string of bytes. In particu-
lar, the attacker might choose 0x48, Oxff, and 0x12, in order, as the final three
character bytes of the two argument string—and thereby arrange for the func-
tion return address to have the value 0x0012f£48. In this case, as soon as the
function returns, the hardware instruction pointer would be placed at the second
character of the two argument string, and the hardware would start executing
the data found there (and chosen by the attacker) as machine code.

In the example under discussion, an attacker would choose their input data
so that the machine code for an attack payload would be present at address

machine code

opcode bytes assembly-language version of the machine code
Oxcd 0x2e int 0x2e ; system call to the operating system
Oxeb Oxfe L: jmp L ; a very short, direct infinite loop

Fig. 6. The simple attack payload used in this chapter; in most examples, the attacker’s
goal will be to execute this machine code. Of these four bytes, the first two are a x86
int instruction which performs a system call on some platforms, and the second two
are an x86 jmp instruction that directly calls itself in an infinite loop (Note that, in
the examples, these bytes will sometimes be printed as the integer Oxfeeb2ecd, with
the apparent reversal a result of x86 little-endianness)

0x0012ff48. When the vulnerable function returns, and execution of the attack
payload begins, the attacker has gained control of the behavior of the target
software. (The attack payload is often called shellcode, since a common goal of
an attacker is to launch a “shell” command interpreter under their control.)

In Fig. 5, the bytes at 0x0012££48 are those of the second to fifth characters
in the string “asdfasdfasdfasdf”, namely ’s’, °d’, *£’, and ’a’. When executed
as machine code, those bytes do not implement an attack. Instead, as described
in Fig. 6, an attacker might choose 0xcd, 0x2e, Oxeb, and Oxfe as a very simple
attack payload. Thus, an attacker might call the operating system to enable a
dangerous feature, or disable security checks, and avoid detection by keeping the
target software running (albeit in a loop).

Return-address clobbering as described above has been a highly successful
attack technique—for example, in 2003 it was used to implement the Blaster
worm, which affected a majority of Internet users [5]. In the case of Blaster, the
vulnerable code was written using explicit loops, much as in Fig. 3. (This was
one reason why the vulnerability had not been detected and corrected through
automatic software analysis tools, or by manual code reviews.)

Attack 1: Constraints and variants

Low-level attacks are typically subject to a number of such constraints, and must
be carefully written to be compatible with the vulnerability being exploited.

For example, the attack demonstrated above relies on the hardware being
willing to execute the data found on the stack as machine code. However, on
some systems the stack is not executable, e.g., because those systems implement
the defenses described later in this chapter. On such systems, an attacker would
have to pursue a more indirect attack strategy, such as those described later, in
Attacks 3 and 4.

Another important constraint applies to the above buffer-overflow attacks:
the attacker-chosen data cannot contain null bytes, or zeros—since such bytes
terminate the buffer overflow and prevent further copying onto the stack. This
is a common constraint when crafting exploits of buffer overflows, and applies to
most of the attacks in this chapter. It is so common that special tools exist for
creating machine code for attack payloads that do not contain any embedded

typedef struct _vulnerable_struct

{

char buff [MAX_LEN];
int (*cmp) (char*,charx*);
} vulnerable;

int is_file_foobar_using heap(vulnerable* s, char* one, char* two)

{
// must have strlen(one) + strlen(two) < MAX_LEN
strcpy(s->buff, one);
strcat(s->buff, two);
return s->cmp(s->buff, "file://foobar");
}

Fig. 7. A C function that sets a heap data structure as the concatenation of two input
strings, and compares the result against “file://foobar” using the comparison function
for that data structure. This function is vulnerable to a heap-based buffer overflow
attack if an attacker can choose either or both of the input strings

null bytes, newline characters, or other byte sequences that might terminate the
buffer overflow (one such tool is Metasploit [17]).

There are a number of attack methods similar to return-address clobber-
ing, in that they exploit stack-based buffer overflow vulnerabilities to target the
function-invocation control data on the stack. Most of these variants add a level
of indirection to the techniques described above. One notable attack variant cor-
rupts the base pointer saved on the stack (see Figs. 4 and 5) and not the return
address sitting above it. In this variant, the vulnerable function may return as
expected to its caller function, but, when that caller itself returns, it uses a re-
turn address that has been chosen by the attacker [27]. Another notable variant
of this attack targets C and C++ exception-handler pointers that reside on the
stack, and ensures that the buffer overflow causes an exception—at which point
a function pointer of the attacker’s choice may be executed [29].

2.2 Attack 2: Corruption of function pointers stored in the heap

Software written in C and C++ often combines data buffers and pointers into the
same data structures, or objects, with programmers making a natural assump-
tion that the data values do not affect the pointer values. Unfortunately, this
may not be the case in the presence of software bugs. In particular, the point-
ers may be corrupted as a result of an overflow of the data buffer—regardless
whether the data structures or objects reside on stack, or in heap memory. Fig. 7
shows C code with a function that is vulnerable to such an attack.

To give a concrete example of this attack, Fig. 8 shows the contents of the
vulnerable data structure after the function in Fig. 7 has copied data into
the buff array using the strcpy and strcmp library functions. Figure 8 shows
three instances of the data structure contents: as might occur during normal
processing, as might occur in an unintended buffer overflow, and, finally, as

buff (char array at start of the struct) cmp
address: 0x00353068 0x0035306c 0x00353070 0x00353074 0x00353078
content: 0x656c6966 0x662f2f3a 0x61626f6f 0x00000072 0x004013ce

(a) A structure holding “file://foobar” and a pointer to the strcmp function.

buff (char array at start of the struct) cmp
address: 0x00353068 0x0035306c 0x00353070 0x00353074 0x00353078
content: 0x656c6966 0x612f2f3a 0x61666473 0x61666473 0x00666473

(b) After a buffer overflow caused by the inputs “file://” and “asdfasdfasdf”.

buff (char array at start of the struct) cmp
address: 0x00353068 0x0035306c 0x00353070 0x00353074 0x00353078
content: Oxfeeb2ecd 0x11111111 0x11111111 0x11111111 0x00353068

(c¢) After a malicious buffer overflow caused by attacker-chosen inputs.

Fig. 8. Three instances of the vulnerable data structure pointed to by s in Fig. 7,
where the size of the buff array is 16 bytes. Both the address of the structure and its
20 bytes of content are shown. In the first instance (a), the buffer holds “file://foobar”
and cmp points to the strcmp function. In the second instance (b), the pointer has
been corrupted by a buffer overflow. In the third instance (c), an attacker has selected
the input strings so that the buffer overflow has changed the structure data so that the
simple attack payload of Fig. 6, page 7, will be executed

might occur during an attack. These instances can occur both when the data
structure is allocated on the stack, and also when it is allocated on the heap.

In the last instance of Fig. 8, the attacker has chosen the two input strings
such that the cmp function pointer has become the address of the start of the
data structure. At that address, the attacker has arranged for an attack payload
to be present. Thus, when the function in Fig. 7 executes the return statement,
and invokes s—>cmp, it transfers control to the start of the data structure, which
contains data of the attacker’s choice. In this case, the attack payload is the four
bytes of machine code Oxcd, 0x2e, Oxeb, and Oxfe described in Fig. 6, page 7,
and used throughout this chapter.

It is especially commonplace for C++ code to store object instances on the
heap and to combine—within a single object instance—both data buffers that
may be overflowed and potentially exploitable pointers. In particular, C++ ob-
ject instances are likely to contain wvtable pointers: a form of indirect function
pointers that allow dynamic dispatch of virtual member functions. As a result,
C++ software may be particularly vulnerable to heap-based attacks [35].

Attack 2: Constraints and variants

Heap-based attacks are often constrained by their ability to determine the ad-
dress of the heap memory that is being corrupted, as can be seen in the exam-
ples above. This constraint applies in particular, to all indirect attacks, where
a heap-based pointer-to-a-pointer is modified. Furthermore, the exact bytes of

those addresses may constrain the attacker, e.g., if the exploited vulnerability
is that of a string-based buffer overflow, in which case the address data cannot
contain null bytes.

The examples above demonstrate attacks where heap-based buffer overflow
vulnerabilities are exploited to corrupt pointers that reside within the same data
structure or object as the data buffer that is overflowed. There are two important
attack variants, not described above, where heap-based buffer overflows are used
to corrupt pointers that reside in other structures or objects, or in the heap
metadata.

In the first variant, two data structures or objects reside consecutively in
heap memory, the initial one containing a buffer that can be overflowed, and the
subsequent one containing a direct, or indirect, function pointer. Heap objects
are often adjacent in memory like this when they are functionally related and are
allocated in order, one immediately after the other. Whenever these conditions
hold, attacks similar to the above examples may be possible, by overflowing the
buffer in the first object and overwriting the pointer in the second object.

In the second variant, the attack is based on corrupting the metadata of the
heap itself through a heap-based buffer overflow, and exploiting that corruption
to write an arbitrary value to an arbitrary location in memory. This is possible
because heap implementations contain doubly-linked lists in their metadata.
An attacker that can corrupt the metadata can thereby choose what is written
where. The attacker can then use this capability to write a pointer to the attack
payload in the place of any soon-to-be-used function pointer sitting at a known
address.

2.3 Attack 3: Execution of existing code via corrupt pointers

If software does not contain any code for certain functionality—such as per-
forming floating-point calculations, or making system calls to interact with the
network—then the programmers may naturally assume that execution of the
software will not result in this behavior, or functionality.

Unfortunately, for C or C++ software, this assumption may not hold in the
face of bugs and malicious attacks, as demonstrated by attacks like those in this
chapter. As in the previous two examples of attacks, the attacker may be able
to cause arbitrary behavior by direct code injection: by directly modifying the
hardware instruction pointer to execute machine code embedded in attacker-
provided input data, instead of the original software. However, there are other
means for an attacker to cause software to exhibit arbitrary behavior, and these
alternatives can be the preferred mode of attack.

In particular, an attacker may find it preferable to craft attacks that execute
the existing machine code of the target software in a manner not intended by its
programmers. For example, the attacker may corrupt a function pointer to cause
the execution of a library function that is unreachable in the original C or C++
source code written by the programmers—and should therefore, in the compiled
software, be never-executed, dead code. Alternatively, the attacker may arrange

10

int median(int* data, int len, void* cmp)

{
// must have 0 < len <= MAX_INTS
int tmp[MAX_INTS];
memcpy(tmp, data, len*sizeof(int)); // copy the input integers
gsort(tmp, len, sizeof(int), cmp); // sort the local copy
return tmp[len/2]; // median is in the middle
}

Fig. 9. A C function that computes the median of an array of input integers by sorting a
local copy of those integers. This function is vulnerable to a stack-based buffer overflow
attack, if an attacker can choose the set of input integers

push edi ; push second argument to be compared onto the stack

push ebx ; push the first argument onto the stack

call [esp+comp_fp] ; call comparison function, indirectly through a pointer
add esp, 8 ; remove the two arguments from the stack

test eax, eax ; check the comparison result

jle label_lessthan ; branch on that result

Fig. 10. Machine code fragment from the gsort library function, showing how the
comparison operation is called through a function pointer. When gsort is invoked
in the median function of Fig. 9, a stack-based buffer overflow attack can make this
function pointer hold an arbitrary address

for reachable, valid machine code to be executed, but in an unexpected order,
or with unexpected data arguments.

This class of attacks is typically referred to as jump-to-1ibec or return-to-
1ibc (depending on whether a function pointer or return address is corrupted
by the attacker), because the attack often involves directing execution towards
machine code in the 1ibc standard C library.

Jump-to-libc attacks are especially attractive when the target software sys-
tem is based on an architecture where input data cannot be directly executed
as machine code. Such architectures are becoming commonplace with the adop-
tion of the defenses such as those described later in this chapter. As a result,
an increasingly important class of attacks is indirect code injection: the selective
execution of the target software’s existing machine code in a manner that en-
ables attacker-chosen input data to be subsequently executed as machine code.
Figure 9 shows a C function that is vulnerable to such an attack.

The function in Fig. 9 actually contains a stack-based buffer overflow vulner-
ability that can be exploited for various attacks, if an attacker is able to choose
the number of input integers, and their contents. In particular, attackers can
perform return-address clobbering, as described in Attack 1. However, for this
particular function, an attacker can also corrupt the comparison-function pointer
cmp before it is passed to gsort. In this case, the attacker can gain control of

11

machine code

address opcode bytes assembly-language version of the machine code
0x7c971649 0x8b 0Oxe3 mov esp, ebx ; change the stack location to ebx
0x7c97164b 0x5b pop ebx ; pop ebx from the new stack
0x7c97164c 0xc3 ret ; return based on the new stack

Fig. 11. Four bytes found within executable memory, in a system library. These bytes
encode three machine-code instructions that are useful in the crafting of jump-to-
libc attacks. In particular, in an attack on the median function in Fig. 9, these three
instructions may be called by the gsort code in Fig. 10, which will change the stack
pointer to the start of the local tmp buffer that has been overflowed by the attacker

normal benign malicious
stack stack overflow overflow
address contents contents contents

0x0012f£38 0x004013e0 0x1111110d 0x7c971649 ; cmp argument
0x0012f£f34 0x00000001 0x1111110c 0x1111110c ; len argument
0x0012££f30 0x00353050 0x1111110b 0x1111110b ; data argument
0x0012ff2c 0x00401528 0x1111110a Oxfeeb2ecd ; return address
0x0012f£f28 0x0012ff4c 0x11111109 0x70000000 ; saved base pointer
0x0012ff24 0x00000000 0x11111108 0x70000000 ; tmp final 4 bytes
0x0012f£20 0x00000000 0x11111107 0x00000040 ; tmp continues
0x0012ffic 0x00000000 0x11111106 0x00003000 ; tmp continues
0x0012f£f18 0x00000000 0x11111105 0x00001000 ; tmp continues
0x0012ff14 0x00000000 0x11111104 0x70000000 ; tmp continues
0x0012f£10 0x00000000 0x11111103 0x7c80978e ; tmp continues
0x0012ff0c 0x00000000 0x11111102 0x7c809a51 ; tmp continues
0x0012f£08 0x00000000 0x11111101 0x11111101 ; tmp buffer starts
0x0012f£f04 0x00000004 0x00000040 0x00000040 ; memcpy length argument
0x0012££f00 0x00353050 0x00353050 0x00353050 ; memcpy source argument
0x0012fefc 0x0012ff08 0x0012ff08 0x0012ff08 ; memcpy destination arg.

Fig. 12. The address and contents of the stack of the median function of Fig. 9, where
tmp is eight integers in size. Three versions of the stack contents are shown, as it would
appear just after the call to memcpy: a first for input data of the single integer zero,
a second for a benign buffer overflow of consecutive integers starting at 0x11111101,
and a third for a malicious jump-to-1libc attack that corrupts the comparison function
pointer to make gsort call address 0x7c971649 and the machine code in Fig. 11

machine-code execution at the point where gsort calls its copy of the corrupted
cmp argument. Figure 10 shows the machine code in the gsort library function
where this, potentially-corrupted function pointer is called.

To give a concrete example of a jump-to-1ibc attack, consider the case when
the function in Fig. 9 is executed on some versions of the Microsoft Windows
operating system. On these systems, the gsort function is implemented as shown
in Fig. 10 and the memory address 0x7c971649 holds the four bytes of executable
machine code, as shown in Fig. 11.

12

// call a function to allocate writable, executable memory at 0x70000000
VirtualAlloc(0x70000000, 0x1000, 0x3000, 0x40); // function at 0x7c809a51

// call a function to write the four-byte attack payload to 0x70000000
InterlockedExchange (0x70000000, Oxfeeb2ecd); // function at 0x7c80978e

// invoke the four bytes of attack payload machine code
((void (*)())0x70000000) () ; // payload at 0x70000000

Fig. 13. The jump-to-libc attack activity caused by the maliciously-corrupted stack
in Fig. 12, expressed as C source code. As the corrupted stack is unwound, instead of
returning to call sites, the effect is a sequence of function calls, first to functions in the
standard Windows library kernel32.d11, and then to the attack payload

On such a system, the buffer overflow may leave the stack looking like that
shown in the “malicious overflow contents” column of Fig. 12. Then, when the
gsort function is called, it is passed a copy of the corrupted cmp function-
pointer argument, which points to a trampoline found within existing, executable
machine code. This trampoline is the code found at address 0x7c971649, which
is shown in Fig. 11. The effect of calling the trampoline is to, first, set the stack
pointer esp to the start address of the tmp array, (which is held in register ebx),
second, read a new value for ebx from the first integer in the tmp array, and,
third, perform a return that changes the hardware instruction pointer to the
address held in the second integer in the tmp array.

The attack subsequently proceeds as follows. The stack is “unwound” one
stack frame at a time, as functions return to return addresses. The stack holds
data, including return addresses, that has been chosen by the attacker to encode
function calls and arguments. As each stack frame is unwound, the return in-
struction transfers control to the start of a particular, existing library function,
and provides that function with arguments.

Figure 13 shows, as C source code, the sequence of function calls that occur
when the stack is unwound. The figure shows both the name and address of
the Windows library functions that are invoked, as well as their arguments.
The effect of these invocations is to create a new, writable page of executable
memory, to write machine code of the attacker’s choice to that page, and to
transfer control to that attack payload.

After the trampoline code executes, the hardware instruction pointer address
is 0x7c809a51, which is the start of the Windows library function VirtualAlloc,
and the address in the stack pointer is 0x0012££10, the third integer in the tmp
array in Fig. 12. As a result, when VirtualAlloc returns, execution will con-
tinue at address 0x7c80978e, which is the start of the Windows library function
InterlockedExchange. Finally, the InterlockedExchange function returns to the
address 0x70000000, which at that time holds the attack payload machine code
in executable memory.

(This attack is facilitated by two Windows particulars: all Windows processes
load the library kernel32.d11 into their address space, and the Windows calling

13

convention makes library functions responsible for popping their own arguments
off the stack. On other systems, the attacker would need to slightly modify the
details of the attack.)

Attack 3: Constraints and variants

A major constraint on jump-to-1ibc attacks is that the attackers must craft each
such attacks with a knowledge of the addresses of the target-software machine
code that is useful to the attack. An attacker may have difficulty in reliably
determining these addresses, for instance because of variability in the versions of
the target software and its libraries, or because of variability in the target soft-
ware’s execution environment. Artificially increasing this variability is a useful
defense against many types of such attacks, as discussed later in this chapter.

Traditionally, jump-to-1ibc attacks have targeted the system function in the
standard system libraries, which allows the execution of an arbitrary command
with arguments, as if typed into a shell command interpreter. This strategy can
also be taken in the above attack example, with a few simple changes. However,
an attacker may prefer indirect code injection, because it requires launching no
new processes or accessing any executable files, both of which may be detected
or prevented by system defenses.

For software that may become the target of jump-to-1ibc attacks, one might
consider eliminating any fragment of machine code that may be useful to the
attacker, such as the trampoline code shown in Fig. 11. This can be difficult
for many practical reasons. For instance, it is difficult to selectively eliminate
fragments of library code while, at the same time, sharing the code memory of
dynamic libraries between their instances in different processes; however, elim-
inating such sharing would multiply the resource requirements of dynamic li-
braries. Also, it is not easy to remove data constants embedded within executable
code, which may form instructions useful to an attacker. (Examples of such data
constants include the jump tables of C and C++ switch statements.)

Those difficulties are compounded on hardware architectures that use variable-
length sequences of opcode bytes for encoding machine-code instructions. For
example, on some versions of Windows, the machine code for a system call is en-
coded using a two-byte opcode sequence, Oxcd, 0x2e, while the five-byte sequence
0x25, 0xcd, 0x2e, 0x00, and 0x00 corresponds to an arithmetic operation (the
operation and eax, 0x2ecd, in x86 assembly code). Therefore, if an instruction
for this particular and operation is present in the target software, then jumping
to its second byte can be one way of performing a system call. Similarly, any
x86 instruction, including those that read or write memory, may be executed
through a jump into the middle of the opcode-byte sequence for some other x86
machine-code instruction.

Indeed, for x86 Linux software, it has been recently demonstrated that it
is practical for elaborate jump-to-libc attacks to perform arbitrary function-
ality while executing only machine-code found embedded within other instruc-
tions [36]. Much as in the above example, these elaborate attacks proceed through
the unwinding of the stack, but they may also “rewind” the stack in order to

14

void run_command_with_argument(pairs* data, int offset, int value)

{
// must have offset be a valid index into data
char cmd[MAX_LEN];
datal[offset] .argument = value;
{
char valuestring[MAX_LEN];
itoa(value, valuestring, 10);
strcpy(cmd, getenv("SAFECOMMAND"));
strcat(cmd, " ");
strcat(cmd, valuestring);
}
dataloffset] .result = system(cmd);
}

Fig. 14. A C function that launches an external command with an argument value,
and stores in a data structure that value and the result of the command. If the offset
and value can be chosen by an attacker, then this function is vulnerable to a data-only
attack that allows the attacker to launch an arbitrary external command

encode loops of activity. However, unlike in the above example, these elaborate
attacks may allow the attacker to achieve their goals without adding any new,
executable memory or machine code the to target software under attack.

Attacks like these are of great practical concern. For example, the flaw in
the median function of Fig. 9 is in many ways similar to the recently discovered
“animated cursor vulnerability” in Windows [20]. Despite existing, deployed de-
fenses, that vulnerability is subject to a jump-to-libc attack similar to that in
the above example.

2.4 Attack 4: Corruption of data values that determine behavior

Software programmers make many natural assumptions about the integrity of
data. As one example, an initialized global variable may be assumed to hold the
same, initial value throughout the software’s execution, if it is never written by
the software. Unfortunately, for C or C++ software, such assumptions may not
hold in the presence of software bugs, and this may open the door to malicious
attacks that corrupt the data that determine the software’s behavior.

Unlike the previous attacks in this chapter, data corruption may allow the
attacker to achieve their goals without diverting the target software from its
expected path of machine-code execution—either directly or indirectly. Such
attacks are referred to as data-only attacks or non-control-data attacks [10]. In
some cases, a single instance of data corruption can be sufficient for an attacker to
achieve their goals. Figure 14 shows an example of a C function that is vulnerable
to such an attack.

As a concrete example of a data-only attack, consider how the function in
Fig. 14 makes use of the environment string table by calling the getenv routine
in the standard C library. This routine returns the string that is passed to

15

address attack command string data as integers as characters
0x00354b20 0x45464153 0x4d4d4f43 0x3d444edl 0x2e646d63 SAFECOMMAND=cmd.
0x00354b30 0x20657865 0x2220632f 0x6d726f66 0x632e7461 exe /c "format.c
0x00354b40 0x63206d6f 0x3e20223a 0x00000020 om c:" >

address first environment string pointer
0x00353610 0x00353730

address first environment string data as integers as characters

0x00353730 0x554c4c41 0x53524553 0x464£5250 0x3d454c49 ALLUSERSPROFILE=
0x00353740 0x445c3a43 0x6d75636f 0x73746e65 0x646e6120 C:\Documents and
0x00353750 0x74655320 0x676e6974 0x6c415c73 0x7355206c Settings\All Us

0x00353760 0x00737265 ers
address opcode bytes machine code as assembly language
0x004011a1 0x89 0x14 0xc8 mov [eax+ecx*8], edx ; write edx to eax+ecx*8

Fig. 15. Some of the memory contents for an execution of the function in Fig. 14,
including the machine code for the data[offset] . argument = value; assignment. If the
data pointer is 0x004033e0, the attacker can choose the inputs offset = 0x1ffea046
and value = 0x00354b20, and thereby make the assignment instruction change the
first environment string pointer to the “format” command string at the top

another standard routine, system, and this string argument determines what
external command is launched. An attacker that is able to control the function’s
two integer inputs is able to write an arbitrary data value to a nearly-arbitrary
location in memory. In particular, this attacker is able to corrupt the table of
the environment strings to launch an external command of their choice.

Figure 15 gives the details of such an attack on the function in Fig. 14, by
selectively showing the address and contents of data and code memory. In this
case, before the attack, the environment string table is an array of pointers start-
ing at address 0x00353610. The first pointer in that table is shown in Fig. 15,
as are its contents: a string that gives a path to the “all users profile”. In a
correct execution of the function, some other pointer in the environment string
table would be to a string, such as SAFECOMMAND=safecmd .exe, that determines
a safe, external command to be launched by the system library routine.

However, before reading the command string to launch, the machine-code
assignment instruction shown in Fig. 15 is executed. By choosing the offset and
value inputs to the function, the attacker can make ecx and edx hold arbitrary
values. Therefore, the attacker can make the assignment write any value to nearly
any address in memory, given knowledge of the data pointer. If the data pointer
is 0x004033e0, then that address plus 8x0x1ffea046 is 0x00353610, the address
of the first environment string pointer. Thus, the attacker is able to write the
address of their chosen attack command string, 0x00354b20, at that location.
Then, when getenv is called, it will look no further than the first pointer in the
environment string table, and return a command string that, when launched,
may delete data on the “C:” drive of the target system.

16

Several things are noteworthy about this data-only attack and the function
in Fig. 14. First, note that there are multiple vulnerabilities that may allow the
attacker to choose the offset integer input, ranging from stack-based and heap-
based buffer overflows, through integer overflow errors, to a simple programmer
mistake that omitted any bounds check. Second, note that although 0x1ffea046
is a positive integer, it effectively becomes negative when multiplied by eight,
and the assignment instruction writes to an address before the start of the data
array. Finally, note that this attack succeeds even when the table of environment
strings is initialized before the execution starts, and the table is never modified
by the target software—and when the table should therefore logically be read-
only given the semantics of the target software.

Attack 4: Constraints and variants

There are two major constraints on data-only attacks. First, the vulnerabilities
in the target software are likely to allow only certain data, or a certain amount
of data to be corrupted, and potentially only in certain ways. For instance,
as in the above example, a vulnerability might allow the attacker to change a
single, arbitrary four-byte integer in memory to a value of their choice. (Such
vulnerabilities exist in some heap implementations, as described on page 10;
there, an arbitrary write is possible through the corruption of heap metadata,
most likely caused by the overflow of a buffer stored in the heap. Many real-world
attacks have exploited this vulnerability, including the GDI+ JPEG attack in
Windows [10, 16].)

Second, even when an attacker can replace any amount of data with arbi-
trary values, and that data may be located anywhere, a data-only attack will be
constrained by the behavior of the target software when given arbitrary input.
For example, if the target software is an arithmetic calculator, a data-only at-
tack might only be able to cause an incorrect result to be computed. However,
if the target software embeds any form of an interpreter that performs poten-
tially dangerous operations, then a data-only attack could control the input to
that interpreter—allowing the attacker to perform the dangerous operations.
The system standard library routine is an example of such an interpreter; many
applications, such as Web browsers and document viewers, embed other inter-
preters for scripting languages.

To date, data-only attacks have not been prominent. Rather, data corruption
has been most frequently utilized as one step in other types of attacks, such as
direct code injection, or an jump-to-libc attack. This may change with the
increased deployment of defenses, including the defenses described below.

3 Defenses That Preserve High-level Language Properties

This section presents, in detail, four effective, practical defenses against low-
level software attacks on x86 machine-code software, and explains how each
defense is based on preserving a property of target software written in the C or

17

C++ languages. These defenses are stack canaries, non-executable data, control-
flow integrity, and address-space layout randomization. They have been selected
based on their efficiency, and ease-of-adoption, as well as their effectiveness.

In particular, this section describes neither defenses based on instruction-set
randomization [25], nor defenses based on dynamic information flow tracking,
or tainting, or other forms of data-flow integrity enforcement [9,32]. Such tech-
niques can offer strong defenses against all the attacks in Sect. 2, although,
like the defenses below, they also have limitations and counterattacks. However,
these defenses have drawbacks that make their deployment difficult in practice.

For example, unless they are supported by specialized hardware, they in-
cur significant overheads. On unmodified, commodity x86 hardware, defenses
based on data-flow integrity may double the memory requirements, and may
make execution up to 37 times slower [32]. Because these defenses also double
the number of memory accesses, even the most heavily optimized mechanism
is still likely to run software twice as slow [9]. Such overheads are likely to be
unacceptable in many scenarios, e.g., for server workloads where a proportional
increase in cost may be expected. Therefore, in practice, these defenses may
never see widespread adoption—especially since equally good protection may be
achievable using a combination of the below defenses.

This section does not attempt a comprehensive survey of the literature on
these defenses. The survey by Younan, Joosen and Piessens provides an overview
of the state of the art of countermeasures for the types of attacks discussed in
this chapter[41, 42]

3.1 Defense 1: Checking Stack Canaries on Return Addresses

The C and C++ languages do not specify how function return addresses are
represented in stack memory. Rather, these, and many other programming lan-
guages, hold abstract most elements of a function’s invocation stack frame in
order to allow for portability between hardware architectures and to give com-
pilers flexibility in choosing an efficient low-level representation. This flexibility
enables an effective defense against some attacks, such as the return-address
clobbering of Attack 1.

In particular, on function calls, instead of storing return addresses directly
onto the stack, C and C++ compilers are free to generate code that stores
return addresses in an encrypted and signed form, using a local, secret key.
Then, before each function return, the compiler could emit code to decrypt
and validate the integrity of the return address about to be used. In this case,
assuming that strong cryptography is used, an attacker that did not know the
key would be unable to cause the target software to return to an address of their
choice as a result of a stack corruption—even when the target software contains
an exploitable buffer overflow vulnerability that allows such corruption.

In practice, it is desirable to implement an approximation of the above de-
fense, and get most of the benefits without incurring the overwhelming cost of
executing cryptography code on each function call and return.

18

address content

0x0012ff5c 0x00353037 ; argument two pointer

0x0012f£58 0x0035302f ; argument one pointer

0x0012ff54 0x00401263 ; return address

0x0012f£f50 0x0012ff7c ; saved base pointer

0x0012ff4c 0x00000000 ; all-zero canary

0x0012££48 0x00000072 ; tmp continues ’r’ ’\0’ ’\0’ ’\0’
0x0012ff44 0x61626f6f ; tmp continues ’o’ ’o’ ’b’ ’a’
0x0012f£40 0x662f2f3a ; tmp continues ’:’> ’/’ ?/’ ’f’
0x0012ff3c 0x656c6966 ; tmp array: £ i 01 e’

Fig. 16. A stack snapshot like that shown in Fig. 4 where a “canary value” has been
placed between the tmp array and the saved base pointer and return address. Before
returning from functions with vulnerabilities like those in Attack 1, it is an effective
defense to check that the canary is still zero: an overflow of a zero-terminated string
across the canary’s stack location will not leave the canary as zero

One such approximation requires no secret, but places a public canary value
right above function-local stack buffers. This value is designed to warn of danger-
ous stack corruption, much as a coal-mine canary would warn about dangerous
air conditions. Figure 16 shows an example of a stack with an all-zero canary
value. Validating the integrity of this canary is an effective means of ensuring that
the saved base pointer and function return address have not been corrupted—
given the assumption that attacks are only possible through stack corruption
based on the overflow of a string buffer. For improved defenses, this public ca-
nary may contain other bytes, such as newline characters, that frequently ter-
minate the copying responsible for string-based buffer overflows. For example,
some implementations have used the value 0x000af£0d as the canary [13].

Stack-canary defenses may be improved by including in the canary value
some bits that should be unknown to the attacker. For instance, this may help
defend against return-address clobbering with an integer overflow, such as is
enabled by the memcpy vulnerability in Fig. 9. Therefore, some implementations
of stack canary defenses, such as Microsoft’s /GS compiler option [7], are based
on a random value, or cookie.

Figure 17 shows the machine code for a function compiled with Microsoft’s
/GS option. The function preamble and postamble each have three new instruc-
tions that set and check the canary, respectively. With /GS, the canary placed
on the stack is a combination of the function’s base pointer and the function’s
module cookie. Module cookies are generated dynamically for each process, using
good sources of randomness (although some of those sources are observable to
an attacker running code on the same system). Separate, fresh module cookies
are used for the executable and each dynamic library within a process address
space (each has its own copy of the __security_cookie variable in Fig. 17). As
a result, in a stack with multiple canary values, each will be unique, with more
dissimilarity where the stack crosses module boundaries.

19

function_with_gs_check:
; function preamble machine code
push ebp save old base pointer on the stack
mov ebp, esp establish the new base pointer
sub esp, 0x14 grow the stack for buffer and cookie
mov eax, [__security_cookie] ; read cookie value into eax
xXor eax, ebp xor base pointer into cookie

mov [ebp-4], eax write cookie above the buffer

; function body machine code

; function postamble machine code
mov ecx, [ebp-4]
xor ecx, ebp

read cookie from stack, into ecx
xor base pointer out of cookie

call __security_check_cookie ; check ecx is cookie value
mov esp, ebp ; shrink the stack back
pop ebp ; restore old, saved base pointer

ret ; return

__security_check_cookie:

cmp ecx, [__security_cookie] ; compare ecx and cookie value
jnz ERR ; if not equal, goto an error handler
ret ; else return

ERR: jmp __report_gsfailure ; report failure and halt execution

Fig. 17. The machine code for a function with a local array in a fixed-size, 16-byte stack
buffer, when compiled using the Windows /GS implementation of stack cookies in the
most recent version of the Microsoft C compiler [7,22]. The canary is a random cookie
value, combined with the base pointer. In case the local stack buffer is overflowed, this
canary is placed on the stack above the stack buffer, just below the return address and
saved base pointer, and checked before either of those values are used

Defense 1: Overhead, Limitations, Variants, and Counterattacks

There is little enforcement overhead from stack canary defenses, since they are
only required in functions with local stack buffers that may be overflowed. (An
overflow in a function does not affect the invocation stack frames of functions it
calls, which are lower on the stack; that function’s canary will be checked before
any use of stack frames that are higher on the stack, and which may have been
corrupted by the overflow.) For most C and C++ software this overhead amounts
to a few percent [13,15]. Even so, most implementations aim to reduce this over-
head even further, by only initializing and checking stack canaries in functions
that contain a local string char array, or meet other heuristic requirements. As a
result, this defense is not always applied where it might be useful—as evidenced
by the recent ANI vulnerability in Windows [20].

Stack canaries can be an efficient and effective defense against Attack 1, where
the attacker corrupts function-invocation control data on the stack. However,
stack canaries only check for corruption at function exit. Thus, they offer no

20

defense against Attacks 2, 3, and 4, which are based on corruption of the heap,
function-pointer arguments, or global data pointers.

Stack canaries are a widely deployed defense mechanism. In addition to Mi-
crosoft’s /GS, StackGuard [13] and ProPolice [15] are two other notable im-
plementations. Given its simple nature, it is somewhat surprising that there is
significant variation between the implementations of this defense, and these im-
plementations have varied over time [7,19]. This reflects the ongoing arms race
between attackers and defenders. Stack canary defenses are subject to a a number
of counterattacks. Most notably, even when the only exploitable vulnerability is
a stack-based buffer overflow, the attackers may be able to craft an attack that is
not based on return-address clobbering. For example, the attack may corrupt a
local variable, an argument, or some other value that is used before the function
exits.

Also, the attacker may attempt to guess, or learn the cookie values, which
can lead to a successful attack given enough luck or determination. The success
of this counterattack will depend on the exploited vulnerability, the attacker’s
access to the target system, and the particulars of the target software. (For
example, if stack canaries are based on random cookies, then the attacker may
be able to exploit certain format-string vulnerabilities to learn which canary
values to embed in the data of the buffer overflow.)

Due to the counterattack where attackers overwrite a local variable other
than the return address, most implementations have been extended to reorder
organization of the stack-frame.

Most details about the function-invocation stack frame are left unspecified in
the C and C++ languages, to give flexibility in the compilation of those language
aspects down to a low-level representation. In particular, the compiler is free to
lay out function-local variables in any order on the stack, and to generate code
that operates not on function arguments, but on copies of those arguments.

This is the basis of the variant of this countermeasure. In this defense, the
compiler places arrays and other function-local buffers above all other function-
local variables on the stack. Also, the compiler makes copies of function argu-
ments into new, function-local variables that also sit below any buffers in the
function. As a result, these variables and arguments are not subject to corruption
through an overflow of those buffers.

The stack cookie will also provide detection of attacks that try to overwrite
data of previous stack frames. Besides the guessing attack described earlier, two
counterattacks still exist to this extended defense. In a first attack, an attacker
can still overwrite the contents of other buffers that may be stored above the
buffer that overflows. A second attack occurs when an attacker overwrite in-
formation of any other stack frames or other information that is stored above
the current stack frame. If this information is used before the current function
returns (i.e., before the cookie is checked), then an attack may be possible. An
example of such an attack was possible against [7]: an attacker would overwrite
the exception-handler pointers, which is stored on the stack above the function
stack frames. The attacker would then cause an exception (e.g., a stack overflow

21

exception or a cookie mismatch exception), which would result in the attacker’s
code being executed [29]. This specific attack was countered by applying De-
fense 3 to the exception handler.

3.2 Defense 2: Making data not be executable as machine code

Many high-level languages allow code and data to reside in two, distinct types
of memory. The C and C++ languages follow this tradition, and do not specify
what happens when code pointers are read and written as data, or what happens
when a data pointer is invoked as if it were a function pointer. This under-
specification brings important benefits to the portability of C and C++ software,
since it must sometimes run on systems where code and data memory are truly
different. It also enables a particularly simple and efficient defense against direct-
code-injection exploits, such as those in Attacks 1 and 2. If data memory is not
executable, then Attacks 1 and 2 fail as soon as the hardware instruction pointer
reaches the first byte of the attack payload (e.g., the bytes 0xfeeb2ecd described
in Fig. 6, and used throughout this chapter). Even when the attacker manages to
control the flow of execution, they cannot simply make control proceed directly
to their attack payload. This is a simple, useful barrier to attack, which can be
directly applied to most software, since, in practice, most software never treats
data as code.

(Some legacy software will execute data as a matter of course; other software
uses self-modifying code and writes to code memory as a part of regular, valid
execution. For example, this behavior can be seen in some efficient, just-in-time
interpreters. However, such software can be treated as a special case, since it is
uncommon and increasingly rare.)

Defense 2: Overhead, Limitations, Variants, and Counterattacks

In its implementation on modern x86 systems, non-executable data has some
performance impact because it relies on double-size, extended page tables. The
NX page-table-entry bit, which flags memory as non-executable, is only found in
PAE page tables, which are double the size of normal tables, and are otherwise
not commonly used. The precise details of page-table entries can significantly im-
pact the overall system performance, since page tables are a frequently-consulted
part of the memory hierarchy—with thousands of lookups a second and, in some
cases, a lookup every few instructions. However, for most workloads, the over-
head should be in the small percents, and will often be close to zero.

Non-executable data defends against direct code injection attacks, but offers
no barrier to exploits such as those in Attacks 3 and 4. For any given direct code-
injection attack, it is likely that an attacker can craft an indirect jump-to-libc
variant, or a data-only exploit [10]. Thus—although this defense can be highly
useful when used in combination with other defenses—by itself, it is not much
of a stumbling block for attackers.

On Microsoft Windows, and most other platforms, software will typically ex-
ecute in a mode where writing to code memory generates a hardware exception.

22

In the past, some systems have also generated such an exception when the hard-
ware instruction pointer is directed to data memory, i.e., upon an attempt to
execute data as code. However, until recently, commodity x86 hardware has only
supported such exceptions through the use of segmented memory—which runs
counter to the flat memory model that is fundamental to most modern operating
systems. (Despite being awkward, x86 segments have been used to implement
non-executable memory, e.g., stacks, but these implementations are limited, for
instance in their support for multi-threading and dynamic libraries.)

Since 2003, and Windows XP SP2, commodity operating systems have come
to support the x86 extended page tables where any given memory page may be
marked as non-executable, and x86 vendors have shipped processors with the
required hardware support. Thus, it is now the norm for data memory to be
non-executable.

Indirect code injection, jump-to-libc attacks, and data-only attacks are all
effective counterattacks to this defense Even so, non-executable data can play
a key role in an overall defense strategy; for instance, when combined with De-
fense 4 below, this defense can prevent an attacker from knowing the location of
any executable memory bytes that could be useful to an attack.

3.3 Defense 3: Enforcing control-flow integrity on code execution

As in all high-level languages, it is not possible for software written in the C
and C++ languages to perform arbitrary control-flow transfers between any two
points in its code. Compared to the exclusion of data from being executed as
code, the policies on control-flow between code are much more fine-grained

For example, the behavior of function calls is only defined when the callee
code is the start of a function—even when the caller invokes that code through a
function pointer. Also, it is not valid to place a label into an expression, and goto
to that label, or otherwise transfer control into the middle of an expression being
evaluated. Transferring control into the middle of a machine code instruction is
certainly not a valid, defined operation, in any high-level language—even though
the hardware may allow this, and this may be useful to an attacker (see Attack 3,
page 14).

Furthermore, within the control flow that a language permits in general, only
a small fraction will, in fact, be possible in the semantics of a particular piece
of software written in that language. For most software, control flow is either
completely static (e.g., as in a C goto statement), or allows only a small number
of possibilities during execution.

Similarly, for all C or C++ software, any indirect control transfers, such
as through function pointers or at return statements, will have only a small
number of valid targets. Dynamic checks can ensure that the execution of low-
level software does not stray from a restricted set of possibilities allowed by the
high-level software. The runtime enforcement of such a Control-Flow Integrity,
or CFI, security policy is a highly effective defense against low-level software
attacks [1,2].

23

int is_file_foobar_using_heap(vulnerable* s, char* one, char* two)

{
// ... elided code ...

if ((s->cmp == strcmp) || (s->cmp == stricmp)) {
return s->cmp(s->buff, "file://foobar");
} else {

return report_memory_corruption_error();

}
}

Fig. 18. An excerpt of the C code in Fig. 7 with explicit CFI checks that only allow
the proper comparison methods to be invoked at runtime—assuming only strcmp and
stricmp are possible. These CFI checks prevent the exploit on this function in Attack 2

bool 1t(int x, int y) {

sort2(): sort(): 1t():

return x < y; ; T § /,, label 17

} . . call sort call17R §

bool gt(int x, int y) { __bretzs
return x > y; label 55 v label 23 &T

} | N TR

sort2(int al], int b[], int len) |caison | Dretss \\ label 17

_-- \

{ label 55 4~ AN
sort(a, len, 1t); § ret 23
sort(b, len, gt);

} ret...

Fig.19. Three C functions and an outline of their possible control flow, as well as
how an CFI enforcement mechanism based on CFI labels might apply to the functions.
In the outline, the CFI labels 55, 17, and 23 are found at the valid destinations of
computed control-flow instructions; each such instruction is also annotated with a CFI
label that corresponds to its valid destinations

There are several strategies possible in the implementation of CFI enforce-
ment. For instance, CFI may be enforced by dynamic checks that compare the
target address of each computed control-flow transfer to a set of allowed des-
tination addresses. Such a comparison may be performed by the machine-code
equivalent of a switch statement over a set of constant addresses. Program-
mers can even make CFI checks explicitly in their software, as shown in Fig. 18.
However, unlike in Fig. 18, it is not possible to write software that explicitly per-
forms CFI checks on return addresses, or other inaccessible pointers; for these,
CFI checks must be added by the compiler, or some other mechanism. Also,
since the set of allowed destination addresses may be large, any such sequence
of explicit comparisons is likely to lead to unacceptable overhead.

One efficient CFI enforcement mechanism, described in [1], modifies accord-
ing to a given control-flow graph, both the source and destination instructions of
computed control-flow transfers. Two destinations are equivalent, when the CFG
contains edges to each from the same set of sources. At each destination, a CFI

24

machine-code opcode bytes machine code in assembly

0x57 push edi

0x53 push ebx

0x8b 0x44 0x24 0x24 mov eax, [esp+comp_fp]
0x81 0x78 Oxfc 0x78 0x56 0x34 0x12 cmp [eax-0x4], 0x12345678
0x75 0x13 jne cfi_error_label

Oxff 0xdO call eax

0x0f 0x18 0x80 0xdd Oxcc Oxbb Oxaa prefetchnta [Oxaabbccdd]
0x83 0xc4 0x08 add esp, 0x8

0x85 0xcO test eax, eax

0x7e 0x02 jle label_lessthan

Fig. 20. A version of Fig. 10, showing how CFT checks as in [1] can be added to the
gsort library function where it calls the comparison function pointer. Before calling
the pointer, it is placed in a register eax, and a comparison establishes that the four
bytes 0x12345678 are found immediately before the destination code, otherwise execu-
tion goes to a security error. After the call instruction, an executable, side-effect-free
instruction embeds the constant Oxaabbccdd; by comparing against this constant, the
comparison function can establish that it is returning to a valid call site

label is inserted, that identifies equivalent destinations, i.e., destinations with the
same set of possible sources. The CFI labels embed a value, or bit pattern, that
distinguishes each; these values need not be secret. Before each source instruc-
tion, a dynamic CFI check is inserted that ensures that the runtime destination
has the proper CFT label.

Fig. 19 shows a C program fragment demonstrating this CFI enforcement
mechanism. In this figure, a function sort2 calls a gsort-like function sort
twice, first with 1t and then with gt as the pointer to the comparison function.
The right side of Fig. 19 shows an outline of the machine-code blocks for these
four functions and all control-flow-graph edges between them. In the figure, edges
for direct calls are drawn as light, dotted arrows; edges from source instructions
are drawn as solid arrows, and return edges as dashed arrows. In this example,
sort can return to two different places in sort2. Therefore, there are two CFI
labels in the body of sort2, and an CFI check when returning from sort, using
55 as the CFI label. (Note that CFI enforcement does not guarantee to which
of the two callsites sort must return; for this, other defenses, such as Defense 1,
must be employed.)

Also, in Fig. 19, because sort can call either 1t or gt, both comparison
functions start with the CFI label 17, and the call instruction, which uses a
function pointer in register R, performs a CFI check for 17. Finally, the CFI
label 23 identifies the block that follows the comparison callsite in sort, so both
comparison functions return with a CFI check for 23.

Figure 20 shows a concrete example of how CFI enforcement based on CFI
labels can look, in the case of x86 machine-code software. Here, the CFI label
0x12345678 identifies all comparison routines that may be invoked by gsort,

25

and the CFI label Oxaabbccdd identifies all of their valid call sites. This style
of CFI enforcement has good performance, and also gives strong guarantees. By
choosing the bytes of CFI labels carefully, so they don’t overlap with code, even
an attacker that controls all of data memory cannot divert execution from the
permitted control-flow graph—assuming that data is also non-executable.

The CFI security policy dictates that software execution must follow a path of
a control-flow graph, determined ahead of time, that represents all possible valid
executions of the software. This graph can be defined by analysis—source-code
analysis, binary analysis, or execution profiling. This graph does not need to be
perfectly accurate, but needs only be a conservative approximation of the control-
flow graph possible in the software, as written in its high-level programming
language. To be conservative, the graph must err on the side of allowing all valid
executions of the software, even this may entail allowing some invalid executions
as well. For instance, the graph might conservatively permit the start of a few-
too-many functions as the valid destinations of a source instruction where a
function pointer is invoked.

Defense 3: Overhead, Limitations, Variants, and Counterattacks

CFT enforcement incurs only modest overhead. With the CFI enforcement mech-
anism in [1], which instruments x86 machine code much as is shown in Fig. 20,
the reported code-size increase is around 8%, and execution slowdown ranges
from 0% to 45% on a set of processor benchmarks, with a mean of 16% Even so,
this overhead is significant enough that CFI enforcement has, to date, seen only
limited adoption. However, a form of CFI is enforced by the Windows SafeSEH
mechanism, which limits dispatching of exceptions to a set of statically-declared
exception handlers; this mechanism does not incur measurable overheads.

CFI enforcement offers no protection against Attack 4 or other data-only
attacks. However, CFI can be an highly effective defense against all attacks
based on controlling machine-code execution, including Attacks 1, 2, and 3.

In particular, CFI enforcement is likely to prevent all variants of Attack 3,
i.e., jump-to-1libc attacks that employ trampolines or opportunistic executable
byte sequences such as those found embedded within machine-code instructions.
This is the case even if CFI enforces only a coarse-grained approximation of the
software control-flow graph, such as allowing function-pointer calls to the start
of any function with the same argument types, and allowing functions to return
to any of their possible call sites [1].

CFI enforcement mechanisms vary both in their mechanisms and in their pol-
icy. Some mechanisms establish the validity of each computed control transfer
by querying a separate, static data structure, which can be a hash table, a bit
vector, or a structure similar to multi-level page tables [38]. Other mechanisms
execute the software in a fast machine-code interpreter that enforces CFI on
control flow [26]. Finally, a coarse-grained form of CFI can be enforced by mak-
ing all computed-control-flow destinations be aligned on multi-word boundaries.
(However, in this last case, any “basic block” is effectively a valid destination,
so trampolines and elaborate jump-to-libc attacks are still feasible.) The com-

26

plexity and overheads of these CFI mechanisms varies, but is typically greater
than that described above, based on CFI labels.

In a system with CFI enforcement, any exploit that does not involve con-
trolling machine-code execution is a likely counterattack; this includes not only
data-only attacks, such as Attack 4, but also other, higher-level attacks, such
as social engineering and flaws in programming interfaces [4]. In addition, de-
pending on the granularity of CFI enforcement policy, and how it is used in
combination with other defenses, there may still exist possibilities for certain
jump-to-libc attacks, for instance where a function is made to return to a
dynamically-incorrect, but statically-possible, call site.

3.4 Defense 4: Randomizing the layout of code and data in memory

The C and C++ languages specify neither where code is located in memory, nor
the location of variables, arrays, structures, or objects. For software compiled
from these languages, the layout of code and data in memory is decided by the
compiler and execution environment. This layout directly determines all concrete
addresses used during execution—and attacks, including all of the attacks in
Sect. 2, typically depend on these concrete addresses.

Therefore, a simple, pervasive form of address encryption can be achieved by
shuffling, or randomizing, the layout of software in the memory address space,
in a manner that is unknown to the attacker. Defenses based on such Address-
Space Layout Randomization, or ASLR, can be a highly practical, effective bar-
rier against low-level attacks. Such defenses were first implemented in the PaX
project [33] and have recently been deployed in Windows Vista [18, 22].

ASLR defenses can be used to change the addresses of all code, global vari-
ables, stack variables, arrays, and structures, objects, and heap allocations; with
ASLR those addresses are derived from a random value, chosen for the software
being executed and the system on which it executes. These addresses, and the
memory-layout shuffling, may be public information on the system where the
software executes. However, low-level software attacks—including most worms,
viruses, adware, spyware, and malware—are often performed by remote attackers
that have no existing means of running code on their target system, or otherwise
inspect the addresses utilized on that system. To overcome ASLR defenses, such
attackers will have to craft attacks that do not depend on addresses, or somehow
guess or learn those addresses.

ASLR is not intended to defend against attackers that are able to control
the software execution, even to a very small degree. Like many other defenses
that rely on secrets, ASLR is easily circumvented by an attacker that can read
the software’s memory. Once an attacker is able to execute even the smallest
amount of code of their choice (e.g., in a jump-to-1ibc attack), it should be safely
assumed that the attacker can read memory and, in particular, that ASLR is
no longer an obstacle. Fortunately, ASLR and the other defenses in this chapter
can be highly effective in preventing attackers from successfully executing even
a single machine-code instruction of their choice.

27

stack one stack two
address contents address contents
0x0022feac 0x008a13e0 0x0013£f750 0x00b113e0 ; cmp argument
0x0022fea8 0x00000001 0x0013f74c 0x00000001 ; len argument
0x0022fead4 0x00a91147 0x0013£748 0x00191147 ; data argument
0x0022fea0 0x008a1528 0x0013f744 0x00b11528 ; return address
0x0022fe9c 0x0022fec8 0x0013f740 0x0013f76c ; saved base pointer
0x0022fe98 0x00000000 0x0013£f73c 0x00000000 ; tmp final 4 bytes
0x0022fe94 0x00000000 0x0013£f738 0x00000000 ; tmp continues
0x0022fe90 0x00000000 0x0013£f734 0x00000000 ; tmp continues
0x0022fe8c 0x00000000 0x0013£f730 0x00000000 ; tmp continues
0x0022fe88 0x00000000 0x0013f72c 0x00000000 ; tmp continues
0x0022fe84 0x00000000 0x0013£f728 0x00000000 ; tmp continues
0x0022fe80 0x00000000 0x0013£f724 0x00000000 ; tmp continues
0x0022fe7c 0x00000000 0x0013£720 0x00000000 ; tmp buffer starts
0x0022fe78 0x00000004 0x0013f71c 0x00000004 ; memcpy length argument
0x0022fe74 0x00a91147 0x0013£f718 0x00191147 ; memcpy source argument
0x0022fe70 0x0022fe8c 0x0013f714 0x0013£f730 ; memcpy destination arg.

Fig. 21. The addresses and contents of the stacks of two different executions of the
same software, given the same input. The software is the median function of Fig. 9,
the input is an array of the single integer zero, and the stacks are snapshots taken
at the same point as in Fig. 12. The snapshots are taken from two executions of that
function on Windows Vista, with a system restart between the executions. As a result
of ASLR defenses, only the input data remains the same in the two executions. All
addresses are different; even so, some address bits remain the same since, for efficiency
and compatibility with existing software, ASLR is applied only at a coarse granularity

As a concrete example of ASLR, Fig. 21 shows two execution stacks for the
median function of Fig. 9, taken from two executions of that function on Windows
Vista, which implements ASLR defenses. These stacks contain code addresses,
including a function pointer and return address; they also include addresses in
data pointers that point into the stack, and in the data argument which points
into the heap. All of these addresses are different in the two executions; only the
integer inputs remain the same.

On many software platforms, ASLR can be applied automatically, in manner
that is compatible even with legacy software. In particular, ASLR changes only
the concrete values of addresses, not how those addresses are encoded in pointers;
this makes ASLR compatible with common, legacy programming practices that
depend on the encoding of addresses.

However, ASLR is both easier to implement, and is more compatible with
legacy software, when data and code is shuffled at a rather coarse granularity.
For instance, software may simultaneously use more than a million heap allo-
cations; however, on a 32-bit system, if an ASLR mechanism randomly spread
those allocations uniformly throughout the address space, then only small con-
tiguous memory regions would remain free. Then, if that software tried to allo-
cate an array whose size is a few tens of kilobytes, that allocation would most

28

likely fail—even though, without this ASLR mechanism, it might certainly have
succeeded. On the other hand, without causing incompatibility with legacy soft-
ware, an ASLR mechanism could change the base address of all heap allocations,
and otherwise leave the heap implementation unchanged. (This also avoids trig-
gering latent bugs, such as the software’s continued use of heap memory after
deallocation, which are another potential source of incompatibility.)

In the implementation of ASLR on Windows Vista, the compilers and the
execution environment have been modified to avoid obstacles faced by other
implementations, such as those in the PaX project [33]. In particular, the soft-
ware executables and libraries of all operating system components and utilities
have been compiled with information that allows their relocation in memory at
load time. When the operating system starts, the system libraries are located
sequentially in memory, in the order they are needed, at a starting point cho-
sen randomly from 256 possibilities; thus a jump-to-libc attack that targets
the concrete address of a library function will have less than a 0.5% chance of
succeeding. This randomization of system libraries applies to all software that
executes on the Vista operating system; the next time the system restarts, the
libraries are located from a new random starting point.

When a Windows Vista process is launched, several other addresses are cho-
sen randomly for that process instance, if the main executable opts in to ASLR
defenses. For instance, the base of the initial heap is chosen from 32 possibilities.
The stacks of process threads are randomized further: the stack base is chosen
from 32 possibilities, and a pad of unused memory, whose size is random, is placed
on top of the stack, for a total of about 16 thousand possibilities for the address
of the initial stack frame. In addition, the location of some other memory regions
is also chosen randomly from 32 possibilities, including thread control data and
the process environment data (which includes the table corrupted in Attack 4).
For processes, the ASLR implementation chooses new random starting points
each time that a process instance is launched.

An ASLR implementation could be designed to shuffle the memory layout at
a finer granularity than is done in Windows Vista. For instance, a pad of unused
memory could be inserted within the stack frame of all (or some) functions; also,
the inner memory allocation strategy of the heap could be randomized. However,
in Windows Vista, such an ASLR implementation would incur greater overhead,
would cause more software compatibility issues, and might be likely to thwart
mostly attacks that are already covered by other deployed defenses. In particular,
there can be little to gain from shuffling the system libraries independently for
each process instance [37]—and such an ASLR implementation would be certain
to cause large performance and resource overheads.

Defense 4: Overhead, Limitations, Variants, and Counterattacks

The enforcement overhead of ASLR defenses will vary greatly depending on the
implementation. In particular, implementations where shared libraries may be
placed at different addresses in different processes will incur greater overhead
and consume more memory resources.

29

However, in its Windows Vista implementation, ASLR may actually slightly
improve performance. This improvement is a result of ASLR causing library
code to be placed contiguously into the address space, in the order that the
code is actually used. This encourages a tight packing of frequently-used page
table entries, which has performance benefits (cf., the page-table changes for
non-executable data, discussed on page 22).

ASLR can provide effective defenses against all of the attacks in Sect. 2 of
this chapter, because it applies to the addresses of both code and data. Even
so, some data-only attacks remain possible, where the attacks do not depend
on concrete addresses, but rely on corrupting the contents of the data being
processed by the target software.

The more serious limitation of ASLR is the small number of memory layout
shuffles that are possible on commodity 32-bit hardware—especially given the
coarse shuffling granularity that is required for efficiency and compatibility with
existing software. As a result, ASLR creates only at most a few thousand possi-
bilities that an attacker must consider, and any given attack will be successful
against a significant (albeit small) number of target systems. The number of
possible shuffles in an ASLR implementation can be greatly increased on 64-bit
platforms, which are starting to be adopted. However, current 64-bit hardware
is limited to 48 usable bits and can therefore offer at most a 64-thousand-fold
increase in the number of shuffles possible [40].

Furthermore, at least on 32-bit systems, the number of possible ASLR shuffles
is insufficient to provide a defense against scenarios where the attacker is able to
retry their attack repeatedly, with new addresses [37]. Such attacks are realistic.
For example, because a failed attack did not crash the software in the case of
the recent ANT vulnerability in Windows [20], an attack, such as a script in
a malicious Web page, could try multiple addresses until a successful exploit
was found. However, in the normal case, when failed attacks crash the target
software, attacks based on retrying can be mitigated by limiting the number of
times the software is restarted. In the ASLR implementation in Windows Vista,
such limits are in place for many system components.

ASLR defenses provide one form of software diversity, which has been long
known to provide security benefits. One way to achieve software diversity is to
deploy multiple, different implementations of the same functionality. However,
this approach is costly and may offer limited benefits: its total cost is proportional
to the number of implementations and programmers are known to make the same
mistakes when implementing the same functionality [30].

ASLR has a few counterattacks other than the data-only, content-based at-
tacks, and the persistent guessing of an attacker, which are both discussed above.
In particular, an otherwise harmless information-disclosure vulnerability may
allow an attacker to learn how addresses are shuffled, and circumvent ASLR
defenses. Although unlikely, such a vulnerability may be present because of a
format-string bug, or because the contents of uninitialized memory are sent on
the network when that memory contains residual addresses.

30

Another type of counterattack to ASLR defenses is based on overwriting only
the low-order bits of addresses, which are predictable because ASLR is applied
at a coarse granularity. Such overwrites are sometimes possible through buffer
overflows on little-endian architectures, such as the x86. For example, in Fig. 21,
if there were useful trampoline machine-code to be found seven bytes into the
cmp function, then changing the least-significant byte of the cmp address on the
stack from 0xeO to 0xe7 would cause that code to be invoked. An attacker
that succeeded in such corruption might well be able to perform a jump-to-
libc attack much like that in Attack 3. (However, for this particular stack, the
attacker would not succeed, since the cmp address will always be overwritten
completely when the vulnerability in the median function in Fig. 9 is exploited.)

Despite the above counterattacks, ASLR is an effective barrier to attack,
especially when combined with the defenses described previously in this section.

4 Summary and discussion

The distinguishing characteristic of low-level software attacks is that they are
dependent on the low-level details of the software’s executable representation
and its execution environment. As a result, defenses against such attacks can be
based on changing those details in ways that are compatible with the software’s
specification in a higher-level programming language.

As in Defense 1, integrity bits can be added to the low-level representation of
state, to make attacks more likely to be detected, and stopped. As in Defenses 2
and 3, the low-level representation can be augmented with a conservative model
of behavior and with runtime checks that ensure execution conforms to that
model. Finally, as in Defenses 1 and 4, the low-level representation can be en-
coded with a secret that the attacker must guess, or otherwise learn, in order to
craft functional attacks.

However, defenses like those in this chapter fall far short of a guarantee that
the software exhibits only the low-level behavior that is possible in the software’s
higher-level specification. Such guarantees are hard to come by. For languages
like C and C++, there are efforts to build certifying compilers that can provide
such guarantees, for correct software [6,28]. Unfortunately, even these compil-
ers offer few, or no guarantees in the presence of bugs, such as buffer-overflow
vulnerabilities. Some compiler techniques, such as bounds checking, can reduce
or eliminate the problem of buffer-overflow vulnerabilities. However, due to the
existence of programmer-manipulated pointers, applying such checks to C is a
hard problem. As a result, this type of checking comes at a hefty cost to per-
formance, lacks scalability or results in code incompatibility [24]. While recently
advances have been made with respect to performance and compatibility, these
newer approaches still suffer from scalability problems [14], or achieve higher
performance by being less accurate [3]. These problems are the main reasons
that this type of checking has not made it into mainstream operating systems
and compilers.

31

Return Heap Jump-to- Non-

address function libc (A3) control
corruption pointer data (A4)
(A1) corruption
(A2)
Partial Partial Partial
Stack C D1
ac anary (D1) defense defense defense
Non-executable data Partial Partial Partial
defense defense defense
(D2)
Control-flow integrity Partial Partial Partial
defense defense defense
(D3)
Address space layout Partial Partial Partial Partial
defense defense defense defense

randomization (D4)

Table 1. A table of the relationship between the attacks and defenses in this chapter.
None of the defenses completely prevent the attacks, in all of their variants. The first
defense applies only to the stack, and is not an obstacle to the heap-based Attack 2.
Defenses 2 and 3 apply only to the control flow of machine-code execution, and do
not prevent the data-only Attack 4. When combined with each other, the defenses are
stronger than when they are applied in isolation

Many of the bugs can also be eliminated by using other, advanced compiler
techniques, like those used in the Cyclone [23], CCured [31], and Deputy [43]
systems. But these techniques are not widely applicable: they require perva-
sive source-code changes, runtime memory-management support, restrictions on
concurrency, and result in significant enforcement overhead.

In comparison, the defenses in this chapter have very low overheads, require
no source code changes but at most re-compilation, and are widely applicable
to legacy software written in C, C++, and similar languages. For instance, they
have been applied pervasively to recent Microsoft software, including all the com-
ponents of the Windows Vista operating system. As in that case, these defenses
are best used as one part of a comprehensive software-engineering methodol-
ogy designed to to reduce security vulnerabilities. Such a methodology should
include, at least, threat analysis, design and code reviews for security, security
testing, automatic analysis for vulnerabilities, and the rewriting of software to
use safer languages, interfaces, and programming practices [21].

The combination of the defenses in this chapter forms a substantial, effective
barrier to all low-level attacks—although, as summarized in Table 1, each offers
only partial protection against certain attacks. In particular, they greatly reduce
the likelihood that an attacker can exploit a low-level security vulnerability for
purposes other than a denial-of-service attack. The adoption of these counter-
measures, along with continuing research in this area which further improves
the protection offered by such countermeasures and with improved programming

32

practices which aim to eliminate buffer overflows and other underlying security
vulnerabilities, offers some hope that, for C and C++ software, low-level software
security may become less of a concern in the future.

Acknowledgments Thanks to Martin Abadi for suggesting the structure of the
original tutorial, and to Yinglian Xie for proofreading and for suggesting useful
improvements to the exposition.

References

1.

10.

11.

12.

13.

14.

M. Abadi, M. Budiu, U. Erlingsson, J. Ligatti: Control-flow integrity. Proc. 12th
ACM Conf. on Computer and Communications Security (CCS’05). Alexandria, VA
(2005), pp. 340-353

M. Abadi, M. Budiu, U. Erlingsson, J. Ligatti: A theory of secure control flow.
Proc. 7th Int. Conf. on Formal Engineering Methods (ICFEM’05). Manchester
(2005), pp. 111-124

P. Akritidis, C. Cadar, C. Raiciu, M. Costa, M. Castro: Preventing memory error
exploits with WIT. Proc. 2008 IEEE Symp. on Security and Privacy. Oakland,
CA (2008), pp. 263-277

R. Anderson: Security Engineering: A Guide to Building Dependable Distributed
Systems. John Wiley & Sons, Inc., New York, NY (2001)

M. Bailey, E. Cooke, F. Jahanian, D. Watson, J. Nazario: The Blaster worm: Then
and now. IEEE Secur. Privacy, 03(4) (2005), pp. 26-31

S. Blazy, Z. Dargaye, X. Leroy: Formal verification of a C compiler front-end. Proc.
14th Int. Symp. on Formal Methods (FM’06), vol. 4085 of LNCS. Hamilton, ON
(2006), pp. 460-475

B. Bray: Compiler security checks in depth (2002). http://msdn2.microsoft.
com/en-us/library/aa290051(vs.71) .aspx

D. Brumley, T. Chiueh, R. Johnson, H. Lin, D. Song: Efficient and accurate detec-
tion of integer-based attacks. Proc. 14th Annual Network and Distributed System
Security Symp. (NDSS’07). San Diego, CA (2007)

M. Castro, M. Costa, T. Harris: Securing software by enforcing data-flow integrity.
Proc. 7th Symp. on Operating Systems Design and Implementation (OSDI’06).
Seattle, WA (2006), pp. 147-160

S. Chen, J. Xu, E. Sezer, P. Gauriar, R. Iyer: Non-control-data attacks are realistic
threats. Proc. 14th USENIX Security Symp. Baltimore, MD (2005), pp. 177-192
I. Corporation: Intel IA-32 architecture, software developer’s manual, Volumes 1-3
(2007). http://developer.intel.com/design/Pentium4/documentation.htm

C. Cowan, M. Barringer, S. Beattie, G. Kroah-Hartman, M. Frantzen, J. Lok-
ier: FormatGuard: Automatic protection from printf format string vulnerabilities.
Proc. 10th USENIX Security Symp. Washington, DC (2001), pp. 191-200

C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang: StackGuard: Automatic adaptive detection and prevention
of buffer-overflow attacks. Proc. 7th USENIX Security Symp. San Antonio, TX
(1998), pp. 63-78

D. Dhurjati, V. Adve: Backwards-compatible array bounds checking for ¢ with very
low overhead. Proc. 28th Int. Conf. on Software Engineering (ICSE ’06). Shanghai
(2006), pp. 162-171

33

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

H. Etoh, K. Yoda: ProPolice—improved stack smashing attack detection. IPSJ
SIGNotes Computer Security (CSEC), 14 (2001)

E. Florio: GDIPLUS VULN - MS04-028 - CRASH TEST JPEG. full-disclosure at
lists.netsys.com (2004). Forum message, sent September 15

J. Foster: Metasploit Toolkit for Penetration Testing, Exploit Development, and
Vulnerability Research. Syngress Publishing (2007)

M. Howard: Alleged bugs in Windows Vistas ASLR implementation
(2006). http://blogs.msdn.com/michael_howard/archive/2006/10/04/
Alleged-Bugs-in-Windows-Vista_1920_s-ASLR-Implementation.aspx

M. Howard: Hardening stack-based buffer overrun detection in VC++ 2005
SP1 (2007). http://blogs.msdn.com/michael_howard/archive/2007/04/03/
hardening-stack-based-buffer-overrun-detection-in-vc-2005-spl.aspx

M. Howard: Lessons learned from the animated cursor security
bug (2007). http://blogs.msdn.com/sdl/archive/2007/04/26/
lessons-learned-from-the-animated-cursor-security-bug.aspx

M. Howard, S. Lipner: The Security Development Lifecycle. Microsoft Press, Red-
mond, WA (2006)

M. Howard, M. Thomlinson: Windows Vista ISV security (2007). http://msdn2.
microsoft.com/en-us/library/bb430720.aspx

T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, Y. Wang: Cyclone: A safe
dialect of C. USENIX Annual Technical Conf. Monterey, CA (2002), pp. 275-288
R. Jones, P. Kelly: Backwards-compatible bounds checking for arrays and pointers
in C programs. Proc. 3rd Int. Workshop on Automatic Debugging, no. 009-02
in Link6ping Electronic Articles in Computer and Information Science. LinkSping
(1997), pp. 1326

G. S. K¢, A. Keromytis, V. Prevelakis: Countering code-injection attacks with
instruction-set randomization. Proc. 10th ACM Conf. on Computer and Commu-
nications Security (CCS’03). Washington DC (2003), pp. 272-280

V. Kiriansky, D. Bruening, S. Amarasinghe: Secure execution via program shep-
herding. Proc. 11th USENIX Security Symp. (2002), pp. 191-206

Klog: The frame pointer overwrite. Phrack, 9(55) (1999)

X. Leroy: Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. Proc. 33rd Symp. on Principles of Programming Languages
(POPL’06) (2006), pp. 42-54

D. Litchfield: Defeating the stack buffer overflow prevention mechanism of
Microsoft Windows 2003 Server (2003). http://www.nextgenss.com/papers/
defeating-w2k3-stack-protection.pdf

B. Littlewood, P. Popov, L. Strigini: Modeling software design diversity: a review.
ACM Comput. Surv., 33(2) (2001), pp. 177-208

G. Necula, S. McPeak, W. Weimer: CCured: Type-safe retrofitting of legacy code.
Proc. 29th ACM Symp. on Principles of Programming Languages (POPL’02). Port-
land, OR (2002), pp. 128-139

J. Newsome, D. Song: Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. Proc. 12th Annual
Network and Distributed System Security Symp. (NDSS’07). San Diego, CA (2005)
PaX Project: The PaX project (2004). http://pax.grsecurity.net/

J. Pincus, B. Baker: Beyond stack smashing: Recent advances in exploiting buffer
overruns. IEEE Secur. Privacy, 2(4) (2004), pp. 20-27

rix: Smashing C++ VPTRs. Phrack, 56 (2000)

34

36.

37.

38.

39.

40.
41.

42.

43.

H. Shacham: The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). Proc. 14th ACM Conf. on Computer and Communi-
cations Security (CCS’07). Washington, DC (2007), pp. 552-561

H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, D. Boneh: On the ef-
fectiveness of address-space randomization. Proc. 11th ACM Conf. on Computer
and Communications Security (CCS’04). Washington DC (2004), pp. 298-307

C. Small: A tool for constructing safe extensible C++ systems. Proc. 3rd Conf.
on Object-Oriented Technologies and Systems (COOTS’97) (1997)

E. Spafford: The Internet worm program: An analysis. SIGCOMM Comput. Com-
mun. Rev., 19(1) (1989), pp. 17-57

Wikipedia: x86-64 (2007). http://en.wikipedia.org/wiki/X86-64

Y. Younan: Efficient Countermeasures for Software Vulnerabilities due to Memory
Management Errors. Ph.D. thesis, Katholicke Universiteit Leuven (2008)

Y. Younan, W. Joosen, F. Piessens: Code injection in C and C++: A survey of
vulnerabilities and countermeasures. Tech. Rep. CW386, Departement Computer-
wetenschappen, Katholieke Universiteit Leuven (2004)

F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals, M. Harren, G. Necula,
E. Brewer: SafeDrive: Safe and recoverable extensions using language-based tech-
niques. Proc. 7th conference on USENIX Symp. on Operating Systems Design and
Implementation (OSDI’06). Seattle, WA (2006), pp. 45-60

35

